[1]李發根,等.在役雙金屬復合管道失效機制及控制措施分析[J].焊管,2019,42(9):64-68.[doi:10.19291/j.cnki.1001-3938.2019.9.012]
 LI Fagen,YANG Jiamao,et al.Failure Mechanism and Control Measures Analysis of Bimetal Composite Pipelines[J].,2019,42(9):64-68.[doi:10.19291/j.cnki.1001-3938.2019.9.012]
點擊復制

在役雙金屬復合管道
失效機制及控制措施分析
()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
42
期數:
2019年第9期
頁碼:
64-68
欄目:
經驗交流
出版日期:
2019-09-28

文章信息/Info

Title:
Failure Mechanism and Control Measures Analysis of Bimetal Composite Pipelines
文章編號:
10.19291/j.cnki.1001-3938.2019.9.012
作者:
李發根1 2楊家茂3馮 泉4李為衛1 2付安慶1 2
1. 中國石油集團石油管工程技術研究院, 西安 710065;
2. 石油管材及裝備材料服役行為與結構安全國家重點實驗室, 西安 710065;
3. 西安長慶科技工程有限公司, 西安 710018; 4. 中國石油塔里木油田分公司, 新疆 庫爾勒 841000
Author(s):
LI Fagen1 2 YANG Jiamao3 FENG Quan4 LI Weiwei1 2 FU Anqing1 2
1. CNPC Tubular Goods Research Institute, Xi’an 710065, China;
2. State Key State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, Xi’an 710065, China;
3. Xi’An Changqing Science and Technology Engineering Co., Ltd., Xi’an 710018, China; 4. PetroChina Tarim Oilfield Company, Korla 841000, Xinjiang, China
關鍵詞:
機械復合管失效機制風險評估內部渦流檢測漏磁檢測
Keywords:
mechanical composite pipe failure mechanism risk assessment internal eddy current inspection magnetic flux leakage testing
分類號:
TE973
DOI:
10.19291/j.cnki.1001-3938.2019.9.012
文獻標志碼:
B
摘要:
雙金屬復合管被認為是解決高腐蝕性氣田地面集輸管線腐蝕問題的一種相對安全和經濟的辦法,但目前國內應用過程中發生了多起失效案例。針對近年來316L內襯機械復合管發生環焊縫開裂、環焊縫腐蝕和襯層塌陷三類典型失效問題,分析失效原因,梳理失效風險,剖析了失效風險控制面臨的挑戰問題和提出可行性的解決措施。分析指出,316L內襯機械復合管存在雙層結構和結合強度低的固有特性,襯層塌陷失效風險不可避免,使用的主要對接焊接工藝不夠成熟,焊接失效隱患將會長期存在。進一步明確了可行的316L內襯機械復合管失效風險控制技術,基于肯特打分的半定量風險評估與開挖檢查,可作為主要失效控制手段之一,同時內部渦流檢測和漏磁檢測技術集成已能夠檢出大面積的金屬損傷,為雙金屬復合管開展內檢、排查失效風險提供了可能。
Abstract:
Bimetal composite pipes are considered to be a relatively safe and economical method to solve the corrosion problem of surface gathering and transportation pipelines in highly corrosive gas fields. However, many failure cases have occurred in the domestic application process. This research mainly focuses on three typical failure problems of 316L mechanical composite pipe with inner lining in recent years, including girth weld cracking, girth weld corrosion and liner collapse. The failure causes are analyzed, failure risks are sorted out, the challenges faced by failure risk control are studied, and feasible solutions are put forward. It is pointed out that 316L lined mechanical composite pipe has inherent characteristics of double-layer structure and low bonding strength. The risk of liner collapse failure is inevitable. The main butt welding technology used is not mature enough, and the hidden danger of welding failure will exist for a long time. The feasible failure risk control technology of 316L lined mechanical composite pipe is further clarified. Semi-quantitative risk assessment and excavation inspection based on Kent scoring can be used as one of the main failure control methods. At the same time, the integration of internal eddy current detection and magnetic flux leakage detection technology have been able to detect a large area of metal damage, which provides a possibility for the internal inspection of bimetal composite pipes and the investigation of failure risk.

參考文獻/References:

[1] 葉帆, 高秋英. 凝析氣田單井集輸管道內腐蝕特征及防腐技術[J]. 天然氣工業, 2010, 30(4): 96-101, 147-148.
[2] ANONYMOUS. Bimetallic pipe chosen for corrosive service[J]. Oil & Gas Journal, 1991, 89(30): 82.
[3] SINGH B, FOLK T, JUKES P, et al. Engineering pragmatic solutions for CO2 corrosion problems[C]//Corrosion/07. Houston, Texas: NACE, 2007: 07310.
[4] 李發根, 魏斌, 邵曉東, 等. 高腐蝕性油氣田用雙金屬復合管[J]. 油氣儲運, 2010, 32(12): 92-96.
[5] MACRAE C. One pipe or two-manufacturing clad pipe for energy applications[J/OL]. https://www.the fabricator.com/article/hydroforming/one-pipe-or-twor, 2008-06-17.
[6] SPENCE R A , SCHAFER K , HUTCHISON J , et al. Bimetal, CRA-lined pipe employed for North Sea field development [J]. Oil & Gas Journal, 1999, 97(18): 80-88.
[7] ROMMERSKIRCHEN I. New progress caps 10 years of work with bubi pipes[J]. World Oil, 2005, 226(7):69-70.
[8] MIURAA R, SAKURABA M. Clad steel pipe for corrosive gas transportation[C]//OTC’95 Annual Offshore Technology Conference. Houston, Texas, USA: [s.n], 1995: 845-851.
[9] LI Fagen, WEI Bin, BAI Zhenquan, at el. Fit for purpose analysis on bimetallic lined pipe in yaha gas condensate field[C]//ICPTT 2011: Sustainable Solutions For Water, Sewer, Gas, And Oil Pipelines. Beijing, China:ICPTT, 2011: 81-89.
[10] RUSSELL D, WILHELM S M. Analysis of bimetallic pipe for sour service[J]. SPE Production Engineering, 1991, 6 (3): 291-296.
[11] 潘旭, 周永亮, 馮志剛, 等. 雙金屬復合管內襯塌陷問題與建議[J]. 石油工程建設, 2017, 43(1): 57-59.
[12] 郭崇曉, 蔣欽榮, 張燕飛, 等. 雙金屬復合管內覆(襯)層應力腐蝕開裂失效原因分析[J]. 焊管, 2016, 39(2): 33-38.
[13] 陳浩, 顧元國, 江勝飛. 20G/316L雙金屬復合管失效的原因[J]. 腐蝕與防護, 2015, 36(12): 1194-1197.
[14] FU A Q, KUANG X R, HAN Y. Failure analysis of girthweld cracking of mechanically lined pipe sed in gasfield gathering system[J]. Engineering Failure Analysis, 2016(68): 64-75.
[15] 陳海云, 曹志錫. 熱載荷對雙金屬復合管殘余接觸壓力的影響[J]. 塑料工程學報, 2007, 14(2): 86-89.
[16] 魏帆, 姜義, 吳澤, 等. 雙金屬復合管鼓包機理分析和試驗研究[J]. 天然氣與石油, 2017, 35(5): 6-11.
[17] LIN Yuan, KYRIAKIDS S. Wrinking failure of lined pipe under bending[C]//32nd International Conference on Ocean, Offshore and Arctic Engineering. Nantes, France:[s.n.], 2013.
[18] VASILIKIS D, KARAMANOS S A. Mechanical behavior and wrinkling of lined pipes[J]. International Journal of Solids and Structures, 2012 (49) : 3432-3446.
[19] 李發根, 孟繁印, 郭琳, 等. 雙金屬復合管焊接技術分析[J]. 焊管, 2014, 37(6): 40-43.
[20] 常澤亮, 金偉, 陳博, 等. 焊接工藝對316L內襯復合管焊接接頭點蝕電位的影響[J]. 全面腐蝕控制, 2017, 30(11): 18-22.
[21] 盧泓方, 吳曉南, ISELEY T, 等. 國外天然氣管道檢測技術現狀及啟示[J]. 天然氣工業, 2018, 38(2): 103-111.
[22] 沈功田, 王寶軒, 郭鍇. 漏磁檢測技術的研究與發展現狀[J]. 中國特種設備安全, 2017, 33(9): 43-52.
[23] HERBERT W, THOMAS M, GERHARD K. Progress in ultrasonic in-line inspection[C]//Pipeline Pigging 2016.  Iran Tehran: [s.n.], 2016: 53-58.
[24] 陳鵬, 韓德來, 蔡強富, 等. 電磁超聲檢測技術的研究進展[J]. 國外電子測量技術, 2012, 31(11): 18-21.
[25] DUBOV A A. A study of metal properties using the method of magnetic memory[J]. Metal Science & Heat Treatment, 1997, 39(9): 401-405.
[26] 王志濤, 韓文禮. 基于直流電位梯度法的灘淺海海底管道外防腐層破損檢測技術研究[J]. 表面技術, 2016, 45(11): 134-138.
[27] BRUNO J, IVO U, ALAIN X, at el. High frequency transformer model derived from limited information about the transformer geometry[J]. International Journal of Electrical Powerand Energy Systems, 2018(94): 300-310.
[28] 姚歡, 劉琰, 馮挺. 瞬變電磁法(TEM)在我國石油工業埋地管道檢測中的應用[J]. 石化技術, 2016(1): 130-131.
[29] 王維斌, 董紅軍, 馮展軍, 等. 非開挖Nopig檢測技術發展現狀與應用前景[J]. 油氣儲運, 2012, 31(3): 161-164.

備注/Memo

備注/Memo:
收稿日期:2019-03-12
基金項目: 陜西省重點研發計劃資助項目“原油采集輸管線防腐蝕集成技術研究”(項目編號2018ZDXM-GY-171);陜西省重點研發計劃資助項目“雙金屬復合管失效機制及控制技術研究”(項目編號2019KJXX-091)。
作者簡介:李發根(1985—),男,高級工程師,2008年碩士畢業于中國石油大學(北京)材料學專業,現主要從事石油管材的研究工作。
更新日期/Last Update: 2019-10-24
2019手机彩票软件排名